facebook

Haskell iIn the datacentre

Simon Marlow
March 2017



—
o

.__.__u.nw...

t_:.aﬂ

..a.l..P

¥ Al b

- - alil

1
Ll

AR TE T A T A UM L L

Sl Ly R RS I S e R |

o T T B S I W I Y rrormeer e P

I ITE T T AT RS Sl

3 = Ed BRI FER EEE L _ 8 5 XL o 22 2 o

o e e







This lecture

. Part 1

The Haxl library: making concurrency easy
. Part 2

The ApplicativeDo transformation

Running Haskell at scale



Our scenario

Other services: DBs, caching, etc.

Input request + data

Your Service
(application <:>
< Results logic)

e.g. web application (result = HTML), other application-logic platforms.



Fetching data efficiently
IS the first-order concern.



We need concurrency

. Typically spend more time waiting for data than computing
. Multiple independent data-fetch requests must be executed
concurrently and/or batched

. Traditional languages and frameworks make the programmer deal with
this
. threads, futures/promises, async, callbacks, etc.
. Hard to get right, hard to refactor later
. Application logic mixed with concurrency
. Clutters the code
. Clash of concerns



The goal

. (Ignoring side effects for now, assume all data-fetching is effect-free)

. data-fetching is a function
. “just write functional code”

- the framework exploits concurrency as far as data dependencies allow

.- The programmer doesn’t need to think about it

friendsWholLikeCPlusPlus = do
friends <- getFriends
filterM likesCPlusPlus friends

where
likesCPlusPlus = ...

getFriends

likesCPlusPlus




numCommonFriends a b = do
fa <- friendsOf a
fb <- friendsOf b

return (length (intersect fa fb))

friendsOf a

friendsOf b

length (intersect ...)




Haxl: a library for implicit concurrency



- Hax1 1s a Monad

- The implementation of (>>=) will allow the computation to block,
waiting for data.

data Result a
= Done a
| Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }



- Haxl is a Monad

- The implementation of (>>=) will allow the computation to block,
waiting for data.

This is the

result of a
data Result a computation

= Done a
| Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }



- Haxl is a Monad

- The implementation of (>>=) will allow the computation to block,
waiting for data.

Done indicates

data Result a that we have
- Done a finished

| Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }



- Haxl is a Monad

- The implementation of (>>=) will allow the computation to block,
waiting for data.

Blocked indicates that the

computation requires this
data Result a data.

= Done a
| Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }



- Haxl is a Monad

- The implementation of (>>=) will allow the computation to block,
waiting for data.

This is the continuation to
data Result a compute the result after the
- Done a data has been fetched

| Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }



- Haxl is a Monad

- The implementation of (>>=) will allow the computation to block,
waiting for data.

data Result a
= Done a
| Blocked [BlockedRequest] (Haxl a) Haxl may need
to do IO
newtype Haxl a = Haxl { unHaxl :: IO (Result a) }



Monad Iinstance

instance Monad Haxl where
return a = Haxl $ return (Done a)

Haxl m >>= k = Haxl $ do
r<-m
case r of
Done a -> unHaxl (k a)
Blocked br c¢ -> return (Blocked br (c >>= k))



Monad Iinstance

instance Monad Haxl where
return a = Haxl $ return (Done a)

Haxl m >>= k = Haxl $ do
r<-m
case r of
Done a -> unHaxl (k a)
Blocked br c¢ -> return (Blocked br (c >>= k))



Monad Iinstance

instance Monad Haxl where
return a = Haxl $ return (Done a)

Haxl m >>= k = Haxl $ do
r<-m
case r of
Done a -> unHaxl (k a)
Blocked br c¢ -> return (Blocked br (c >>= k))

If m blocks with continuation c,
the continuation for m >>=k is ¢ >>=k



This is called a concurrency monad

. The essence of computations that can pause and continue
. It needs a scheduler

. The scheduler will

Run the computation

f it returns Done a, we're finished, result is a

fit returns Blocked reqgs cont:

fetch the required data reqgs
continue by executing cont




The scheduler

. Assume we have a way to fetch data:

fetch :: [BlockedRequest] -> I0 ()

- Now, to run a Haxl computation to completion:

runHaxl :: Haxl a -> IO a
runHaxl (Haxl h) = do
result <- h
case result of
Done a -> return a
Blocked br cont -> do
fetch br
runHaxl cont



But how do we get the result of a data fetch”?

. It is possible to plumb it around, but messy and inefficient
. In Haxl we use an IORef:

data BlockedRequest =
forall a . BlockedRequest

A request for a result of type a

Put the result here (initially Nothing)

. The job of fetch is to fetch the data and fill the |IORefs:

fetch :: [BlockedRequest] -> IO ()



We need a request operation

Empty ref to
put the result

dataFetch ::
dataFetch reqg = Haxl $ do
ref <- newIORef Nothing
return (Blocked [BlockedFetch req ref] (get ref))

where c
_ ontinuation:
get ref = Haxl $ do read the result
Just x <- readIORef ref from the ref
return Xx

(this is simplified; in the real Haxl, Request is a type class so that
you can use it with arbitrary data sources)



Example of a Request

Use a GADT:

data

FriendsOf ::

friendsOf ::

friendsOf x

where

dataFetch (FriendsOf x)



Yes, but the point was to be able to do multiple data-fetches
concurrently!

So far you've only told us how to do one data-fetch at a time.



Our example will block on the first friendsOf request:

numCommonFriends a b = do
fa <- friendsOf a blocks here
fb <- friendsOf b
return (length (intersect fa fb))

How do we allow the Monad to collect multiple data-fetches, so we
can execute them concurrently?



First, rewrite to use Applicative operators

numCommonFriends a b =
length <$> (intersect <$> friendsOf a <*> friendsOf b)

- When we use Applicative, Haxl can collect multiple data fetches and
execute them concurrently.

- How?



Applicative allows parallelism

(>>=) :: Monad m =>m a — (@ > mb) > mb
dependency
(<*>) :: Applicative f => f (a - b) —» f a — f b

Independent



Applicative

. You can use <*> only when the two computations have no data
dependency (they may have effect dependencies though...)

. The implementation of <*> is therefore free to exploit this
Independence for parallelism

. This is why Applicative is a weaker abstraction than Monad: it
doesn’t provide for data dependency between effects



Applicative instance

instance Applicative Haxl where
pure = return

Haxl f <*> Haxl x = Haxl $ do

' <- f

X' <- X

case (f',x') of
(Done g, Done vy ) -> return (Done (g y))
(Done g, Blocked br ¢ ) -> return (Blocked br (g <$> c))
(Blocked br c, Done y ) -> return (Blocked br (c <*> return y))

(Blocked brl c, Blocked br2 d) -> return (Blocked (brl <> br2) (c <*> d))

<*> allows both arguments to block waiting for data

<*> can be nested, letting us collect an arbitrary number of data fetches
to execute concurrently



Example

(intersect <$> friendsOf x) <*> friendsOf y

(friendsOf x >>= return . intersect) <*> friendsOf y

(<$>) = fmap
fmap f m = m >>= return . f



Example

(friendsOf x >>= return . intersect) <*> friendsOf y

((Blocked [BlockedRequest (FriendsOf x) rx] (get rx)
>>= return . intersect) <*> friendsOf y

friendsOf x = dataFetch (FriendsOf x)

dataFetch ::
dataFetch req = Haxl $ do
ref <- newIORef Nothing
return (Blocked [BlockedFetch req ref] (get ref))



Example

((Blocked [BlockedRequest (FriendsOf x) rx] (get rx)
>>= return . intersect) <*> friendsOf y

(Blocked [BlockedRequest (FriendsOf x) rx]
(get rx >>= return . intersect)) <*> friendsOf y

Haxl m >>= k = Haxl $ do
r<-m
case r of
Done a -> unHaxl (k a)
Blocked br ¢ -> return (Blocked br (c >>= k))



Example

(Blocked [BlockedRequest (FriendsOf x) rx]
(get rx >>= return . intersect)) <*> friendsOf y

(Blocked [BlockedRequest (FriendsOf x) rx]
(get rx >>= return . intersect)) <*>
Blocked [BlockedRequest (FriendsOf y) ry] (get ry)



Example

(Blocked [BlockedRequest (FriendsOf x) rx]
(get rx >>= return . intersect)) <*>
Blocked [BlockedRequest (FriendsOf y) ry] (get ry)
Blocked [ BlockedRequest (FriendsOf x) rx
, BlockedRequest (FriendsOf y) ry]
((get rx >>= return . intersect) <*> get ry)

Haxl f <*> Haxl x = Haxl $ do
' <- f

X' <- X
case (f',x"') of

(Blocked brl c, Blocked br2 d) ->
return (Blocked (brl <> br2) (c <*> d))



>>=

Round

Round



(Some) Concurrency for free

- Applicative is a standard class in Haskell
. Lots of library functions are already defined using it

. These work concurrently when used with Haxl

. e.g.
sequence :: Monad m => [m a] -> m [a]
mapM :: Monad m => (a -> b) ->m [a] -> m [b]
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]

friendsLikeCPlusPlus = do
friends <- getFriends
cppFriends <- filterM likesCPlusPlus friends



Haxl Is a general solution
. ... to the problem of scheduling I/O

. It's useful anywhere that needs to do I/O and doesn’t want to express
concurrency explicitly.

. Let’s write a blog engine.



Concrete example: a blog

. Main pane: posts

. Left pane:
- Top-10 most popular posts

- Post topics, with post counts




blog :: Haxl Html
blog = |[renderPage <$> leftPane <*> mainPane

leftPane :: Haxl Html
leftPane = renderSidePane <$> popularPosts <*> topics

renderPage :: Html -> Html -> Html
renderSidePane :: Html -> Html -> Html



data PostId -- ldentifies a post
data PostContent -- the content of a post

-- metadata about a post
data PostInfo = PostInfo

{ postId .+ PostlId

, postDate :: Date

y e

}
-- data-fetching operations
getPostIds :+ Haxl [PostId]
getPostInfo :: PostId -> Haxl PostInfo

getPostContent :: PostId -> Haxl PostContent

getAllPostsInfo :: Haxl [PostInfo]
getAllPostsInfo = do

ids <- getPostlds

mapM getPostInfo 1ids



First we fetch

all the
Sort it by date,
mainPane :: Haxl Html AECREIE and take the
mainPane = do latest 5

posts <- getAllPostsInfo

let ordered = take 5 $ sortBy (flip (comparing postDate)) posts
content <- mapM (getPostContent . postId) ordered
return $ renderPosts (zip ordered content)

Fetch the

content for
And finally those 5

render the
output



Things to note

mainPane :: Haxl Html
mainPane = do
posts <- getAllPostsInfo
let ordered = take 5 $ sortBy (flip (comparing postDate)) posts
content <- mapM (getPostContent . postlId) ordered
return $ renderPosts (zip ordered content)

- No explicit concurrency constructs
Just standard structuring tools: do-notation, <*>, mapM

No concurrency bugs



No manual batching

getAllPostsInfo :: Haxl [PostInfo]
getAllPostsInfo = do

ids <- getPostIds This line

performs many

mapM getPostInfo ids data fetches
Unbatched Batched
SELECT postinfo FROM posts SELECT postinfo FROM posts
WHERE postid = id1l WHERE postid IN {idl, id2,

SELECT postinfo FROM posts
WHERE postid = 1d2



Multiple parts of our application might want to access the same data
e.g. in the blog, we query the list of posts in multiple panes

mainPane :: Haxl Html
mainPane = do
posts <- getAllPostsInfo

topics :: Haxl Html
topics = do
posts <- getAllPostsInfo



Caching

. For efficiency, fetch the data only once
. But factoring out the fetching logic and passing the results around
would be
anti-modular
unnecessary code churn and clutter
. Therefore: Haxl caches all data fetches automatically
. Multiple identical requests result in just one remote fetch

. Ubiquitous caching is liberating: don’t worry about duplicating work,
just write the logic you want.



Taking caching a step further

. At the end of the computation, the cache contains all the data we
fetched
. If we run the computation again,
it will use the cached data
and return exactly the same result as before, guaranteed
. We can exploit this!
Run the code & save the cache, we now have a unit test that
works even when the real data changes
We can debug errors that happen in production



. Haxl provides dumpCacheAsHaskell

(demo)

copy/paste result to make a unit test

at Facebook we have a custom GHCi command to create tests



Taking caching even further...

. We can cache not just data-fetches, but the results of arbitrary
computations.

. This is called memoization
. Haxl supports memoization via an operation:

cachedComputation ::

. Memoization is liberating, just like caching:

we can stop worrying about duplicating work.
share code, not work.

Increases modularity, no need to plumb results around.
Just write the logic you want.

(needs profiling to decide where to memoize)



End of Part 1!



Our scenario

Other services: DBs, caching, etc.

Input request + data

Your Service
(application <:>
< Results logic)

e.g. web application (result = HTML), other application-logic platforms.



Recap

. Fetching data efficiently is the first-order concern

(we typically spend more time waiting for data than computing)
. Getting concurrency right by hand is

difficult

annoying

fragile

distracts from the logic you'’re trying to implement



numCommonFriends :: Id — Id — Haxl Int
numCommonFriends x y =
length <$>
(1ntersect
<$> friendsOf x
<*> friendsOf y)

Parallel data-fetch




But that’'s not enough

. Writing in Applicative style by hand can be painful
. The programmer has to spot where they can use <*>



numCommonFriends :: Id — Id — Haxl Int
numCommonFriends x y = do

fx « friendsOf x

fy « friendsOf vy

return (length (intersect fx fy))

Sequential data-fetches




Getting it right in more complex cases can be really hard...



do x1
X2
X3
x4 X3
X5 X1l x4
return (x2,x4,x5)

X1

T 1T 11

I

do ((x1,x2),x4) <- (,)
<$> (do x1 <- a
X2 <- b x1
return (x1,x2))
<*> (do x3 <- c; d x3)
X5 <- e x1 x4
return (x2,x4,x5)



What shall we do instead?

* et the user write do-notation
* Have the compiler translate to <*> where possible

* (as a special case, we also get to use do-notation
for types that are Applicative but not Monad.)



In submission

Desugaring Haskell’s do-notation Into Applicative Operations

Simon Marlow Simon Peyton Jones

Microsoft Research
simonpj@microsoft.com

Facebook
smarlow®@fb.com

Abstract

Monads have taken the world by storm, and are supported by do-
notation (at least in Haskell). Programmers are increasingly waking
up to the usefulness and ubiquity of Applicatives, but they have
so far been hampered by the absence of supporting notation. In
this paper we show how to re-use the very same do-notation to
work for Applicatives as well, providing efficiency benefits for
some types that are both Monad and Applicative, and syntactic
convenience for those that are merely Applicative. The result is
fully implemented in GHC, and is in use at Facebook to make it
easy to write highly-parallel queries in a distributed system.

1. Introduction

Consider this Haskell function that calculates the number of com-
mon friends between two Facebook users:

numCommonFriends :: Id + Id + Haxl Imnt
numCommonFriends x y = deo

fx + friendsOf x

fy + friends0f y

return (length (intersect fx fy))

Here friendsOf is an operation that makes a remote query to
a database to fetch the list of friends of a user. Desugaring the
monadic do expression according to the Haskell standard 110]

Edward Kmett

McGraw Hill Financial
ekmett@mhfi.com

Andrey Mokhov

Newcastle University
andrey.mokhov@ncl.ac.uk

a Monad lies an Applicative [13]. To be concrete, we can rewrite
numCommonFriends using Applicative combinators like this:

numCommonFriends :: Id + Id -+ Haxl Int
numCommonFriends x y =
(Afx fy + length (intersect fx fy))
<$> friendsOf x
<*> friendsOf y

The combinators <$> and <*> are defined in Figure[I] but for now
we simply note that the two calls to friends0f are now manifestly
independent of one another. And indeed the implementation of the
Hax1 monacﬂ can take advantage of that independence to perform
the two friendsOf queries in parallel: in fact it collects them
together and batches them into a single query.

But there is still a problem; programmers should not have to spot
where they can use <#> to gain its advantages. because they are
likely to miss some opportunities, especially when code is refac-
tored. Moreover there are maintainability and comprehensibility
benefits in using a single universal notation, namely do notation.
In this paper we show how to have our cake and eat it too: the
programmer writes do notation, and the compiler desugars it au-
tomatically into the efficient parallel code that uses Applicative
combinators. We make these contributions:

e Rather than desugaring de notation uniformly into Monad com-
binators, we show how to take advantage of the program’s de-

mamdanarr ctematnes fa calactiiale e BT $ and S ren sramnbhinn



Why is this useful?

- Just write a sequence of statements

. Compiler analyses the dependencies and extracts the maximum
parallelism by transforming the sequence using <*> where possible

- We don’t have to think about dependencies

- We cannot miss any opportunities accidentally



Start with a simple example

do x1 <- A
X2 <- B
return (x1,x2)
Standard
Haskell ApplicativeDo
desugaring
A >>= \x1 -> equivalent (,) <$> A <*> B

B >>= \x2 ->

return (x1,x2) f <$> ma = ma >>= \a ->

return (f a)

mf <*> ma = mf >>= \f ->
ma >>= \a ->
return (f a)



Dependencies prevent <*>

do x1 <- A
X2 <- B[x1]
return (x1,x2)

- Now we cannot use <*>, because B depends on x1

. This is the essence of the difference between Applicative and Monad:

(<*>) :: Applicative f

>f (a ->b) -> f a ->f b
(>>=) :: Monad f > f a

->(a -> fb) ->fb

- S0 we want to use Applicative when possible but Monad when
necessary.



Mixing it up
- What about

do x1 <- A
X2 <- B
X3 <- C[x1]
X4 <- D[x2]
return (x3,x4)



do x1 <- A

X2 <- B
X3 <- C[x1]
x4 <- D[x2]

return (x3,x4)

ApplicativeDo

((5) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]



But is that the best translation?

A\ /'C\

() resul (A|B);(C|LC
N



But is that the best translation?

A\ /'C\

() resul (A|B);(C|LC
T~

p

. But we only have dependencies A->C and B->D, so why not

A > C

\
B >D/

sl (A;C)I(B;D)




Evaluating cost

- Take a simple parallel cost model

7 — 13 m aX”

TR L I TR |
= '+

J

-e.g.takeA=2,B=1,C=1,D=2
(A|B); (C|D) cost: 4
(A;C)| (B ;D) cost: 3



Alternative translations

; ((,) <$> A <*> B) >>= \(x1,x2) ->
(A|B);(C|D) 0383 CIxt] <% Dlx2]

: : (,) <$> (A >>= \x1 -> C[x1])
(A ’ C) | (B ’ D) <*> (B >>= \iz -> D[§2])



But...

do x1 <- A
X2 <- B
x3 <- C[x1]
X4 <- D[x2]
return (x3,x4)

O =

(,) <$> (A >>= \x1 -> C[x1])
<*> (B >>»= \x2 -> D[x2])

. This Is not semantically equivalent to the original

. Effects would take place in the order A,C,B,D



But do we really care about ordering?

- Haxl doesn’t — or at least, there are no effects to observe

- But we do want exceptions to be deterministic:

do x1 <- A
X2 <- B
X3 <- C[x1]
X4 <- D[x2]
return (x3,x4)

. If B and C throw exceptions, | always want B’s exception.

. Reordering to A,C,B,D would break this.



Preserving equivalence is good

. It means ApplicativeDo works with any Monad/Applicative that satisfies
the laws.

. If we reordered things, it would only work on commutative Monads.



What does optimal mean?

do x <- A
y <- B A B C
z <- C[x]
return (y + z) \_/
- Choices:

A=0, B=2, C=1 A=1, B=2, C=0
(A|B);C 3 2
A;(B|C) 2 3



. We don’t know the costs at compile time.
- Therefore, be conservative.

. Qur goal:

Choose a translation that is
optimal when all statements
have equal cost.

. (there may be multiple valid solutions)



(Aside: use “join”)

do x1 <- A
X2 <- B
X3 <- C[x1]
X4 <- D[x2]

return (x3,x4)

ApplicativeDo
((5) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

. Better: join :: Monad m => m (m a) -> m a
join m = m >>= id

join ((\x1 x2 -> (,) C[x1] <*> D[x2]) <$> A <*> B)



Algorithm sketch

. Two stages:

do x1 <- A
X2 <- B[x1]
X3 <- C
return (x2,x3)

rearrangement
{ x1 <- A; x2 <- B[x1] } | { x3 <-C }

desugaring

(\x2 x3 -> (x2,x3))
<$> (A >>= \x1 -> B[x1])
<*> C



Rearrangement

- Start with a list of statements L

{s, 5 ... 55s 1}

(L] oeee | L)

. Introduce “parallel blocks” s
. Meaning: just flatten the list

- A parallel block will turn into an applicative expression

do x1 <- A
X2 <- B[x1]
X3 <- C
return (x2,x3)

rearrangement

{ x1 <- A; x2 <- B[x1] } | { x3 <-C }



Where do we introduce parallel blocks?

. Take the sequence without the final do x1 <- A
return x2 <- B[x1]
X3 <- C

. (desugaring will put it back later)

. Split the sequence into segments do x1 <- A >
X2 <- B[x1]
- Place a segment boundary between TTX3TIT T

two statements when there are no
dependencies that cross the boundary

- Make a para”el block from the rearrange { x1 <- A; X2 <- B[Xl] }
segments; apply recursively | rearrange { x3 <- C }



What if there are no segments?

. If it's a single statement: we’re done rearrange { x3 <- C }
= { x3 <- C }

“.n

- Otherwise we need a “;” somewhere

- In this case we have no choice: rearrange { X1 <- A; X2 <- B[Xl] }
= { x1 <- A; x2 <- B[x1] }

. (we'll do a more complex example

shortly)

. Result of rearrangement:

{ x1 <- A; x2 <- B[x1] } | { x3 <- C }



Next, desugar to get an expression

desugar ({ x1 <- A; x2 <- B[x1] } | { x3 <- C }) (x2,x3)

The expression
from “return”

. desugaring a parallel block yields an Applicative expression:
(\x2 x3 -> (x2,x3))

<$> desugar { x1 <- A; x2 <- B[x1] } x2
<*> desugar { x3 <- C } x3



(\x2 x3 -> (x2,x3))
<$> desugar { x1 <- A; x2 <- B[x1] } x2
<*> desugar { x3 <- C } x3

- First, deal with this:

desugar { x3 <- C } x3

C
- Next:

desugar { x1 <- A; x2 <- B[x1] } x2

A >>= \x1 -> desugar { x2 <- B[x1] } x2

A >>= \x1 -> B[x1]



Result G0 X1 <- A

X2 <- B[x1]
x3 <- C
return (x2,x3)

(\x2 x3 -> (x2,x3))
<$> (A >>= \x1 -> B[x1])
<*k> C



A more complex example

x1 <-
x2 <- B[xl]
X3 <-
gx4 < - D[x3]
X5 <- E[x1,x4]
return (x2,x4,x5)

- Rearrange:

There are no segments

(13}

We have to insert “;” somewhere

And end up with the optimal result



Finding the optimal result

- Just evaluate all possibilities:
Starting with ¢ S, 5 «eo 3 S}
For eachiin 2..n, compute

rearrange { s, ; ... ; s, , } ; rearrange { s, ; ... ; s }

Evaluate with parallel cost model, with “|" = “max” and *;” = “+”

“l”

Every statement costs 1

Pick the cheapest!



X2 <- B[x1]

X3 <- C

X4 <- D[x3]

X5 <- E[x1,x4]

return (x2,x4,x5)

A ; (B|{C;D;E})

(cost 4)



x3 <-C 7
§X4 <- D[x3]
X5 <- E[x1,x4]

return (x2,x4,x5)



x1 <-
x2 <- B[xl
X3 <-
__)(_AI-_<___'D'[X3 _______________ ({A;B}lC) ; D;E (COSt 4)
X5 <- E[x1,x4]

return (x2,x4,x5)



X1 <- A
X2 <- B[x1]

X3 <- C

gx4 <- D[x3]

X5 RETE[RI;X4T oo ({A;B}|{C;D}) ; E (cost 3)
return (x2,x4,x5)

We have a winner!




. After desugaring:

join (\(x1,x2) x4 ->
E[x1,x4] >>= \x5 -> pure (x2,x4,x5))
<$> (A >>= \x1 -> B[x1] >>= \x2 -> return (x1,x2))
<*> (C >»>= \x3 -> D[x3])

- Full details in the paper, “Translating Haskell's do-notation into
Applicative operations” (Haskell Symposium 2016)



Results

. This transform is being used across our codebase at Facebook
. (hundreds of thousands of lines of code)

. Users typically don’t worry about concurrency
. ApplicativeDo gives 20-50% improvement in request latency

(there is already concurrency from mapM, explicit <*>, etc.)



Haskell In the datacentre



Our scenario

Other services: DBs, caching, etc.

Input request + data

Your Service
(application <:>
< Results logic)




Our scenario

Other services: DBs, caching, etc.

@.
—

Facebook activity

< block / allow

. Sigma is a rule engine used to detect abusive activity
. Rule logic is written in Haskell, using Haxl + ApplicativeDo



Stats

. Haskell-based Sigma has been running now for over 2 years
. Serves over 1M requests per second
. Largest Haskell deployment in the world:
thousands of machines across 6 datacentres
- Handles abuse detection for multiple different teams & products
. Many dozens of people writing Haskell day to day



Moving fast

. “git push” pushes to production(!)
Code changes are running live within minutes of pushing
But not foo fast:
code review
build failure prevents push
automated unit tests
automated profiling runs to detect regressions



What kind of Haskell do we write?

. Custom Prelude

Haxl stuff + common APIs

. Partial functions removed (head, undefined...)
Due to difficulty of debugging when they happen in production

. Mainly Tasty + HUnit for unit tests

(QuickCheck in a few places)
. HLint to enforce style and catch obvious opportunities for cleanup

also to prevent use of deprecated APls
. Automated tools for refactoring across the whole codebase

great for API migrations, cleaning up after deprecations



Tooling

. Custom GHCi “haxlIsh”
Used for all development & debugging
Links in external C++ libraries to talk to data sources
Means we can interactively develop and test code against

production data

“‘Remote GHCI”
Interpreted code runs in profiling mode, so we get stack traces for

exceptions



Tooling cont.

. Our own Thrift to Haskell compiler
Thrift is a language-independent RPC protocol used in FB
Thrift spec defines types and requests for a service
Our compiler uses GADTs and DataKinds to statically enforce
compiler correctness
For most external data, we talk to the service using Haskell code

generated by our Thrift compiler
Lightweight Haskell threads scale better than C++ threads



Performance

. We did a few things to improve performance:

Tweaks to the GC
Instead of fixed-size per-CPU nurseries, a pool of nursery chunks
Instead of one worker thread per core, N worker threads per core
but use fewer for GC
Improved load balancing

NUMA-optimised memory allocation
Worker threads pinned to NUMA nodes
Nurseries are pinned to the local NUMA node



facebook

Questions?



