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This lecture
▪ Part 1

▪ The Haxl library: making concurrency easy
▪ Part 2

▪ The ApplicativeDo transformation
▪ Running Haskell at scale



Our scenario

e.g. web application (result = HTML), other application-logic platforms.

Your Service
(application 

logic)

Input request + data

Results

Other services: DBs, caching, etc. 



Fetching data efficiently 
is the first-order concern.



We need concurrency
▪ Typically spend more time waiting for data than computing
▪ Multiple independent data-fetch requests must be executed 
concurrently and/or batched

▪ Traditional languages and frameworks make the programmer deal with 
this
▪ threads, futures/promises, async, callbacks, etc.
▪ Hard to get right, hard to refactor later
▪ Application logic mixed with concurrency

▪ Clutters the code
▪ Clash of concerns



The goal
▪ (Ignoring side effects for now, assume all data-fetching is effect-free)
▪ data-fetching is a function
▪ “just write functional code”
▪ the framework exploits concurrency as far as data dependencies allow
▪ The programmer doesn’t need to think about it

friendsWhoLikeCPlusPlus = do
  friends <- getFriends
  filterM likesCPlusPlus friends
 where
  likesCPlusPlus = ...

getFriends

likesCPlusPlus
likesCPlusPlus

likesCPlusPlus
likesCPlusPlus

likesCPlusPlus



numCommonFriends a b = do
  fa <- friendsOf a
  fb <- friendsOf b
  return (length (intersect fa fb))

friendsOf a friendsOf b

length (intersect ...)



Haxl: a library for implicit concurrency



▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block, 
waiting for data.

data Result a
  = Done a
  | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }



▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block, 
waiting for data.

data Result a
  = Done a
  | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

This is the 
result of a 

computation



▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block, 
waiting for data.

data Result a
  = Done a
  | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Done indicates 
that we have 

finished



▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block, 
waiting for data.

data Result a
  = Done a
  | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Blocked indicates that the 
computation requires this 

data.



▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block, 
waiting for data.

data Result a
  = Done a
  | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

This is the continuation to 
compute the result after the 

data has been fetched



▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block, 
waiting for data.

data Result a
  = Done a
  | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Haxl may need 
to do IO



Monad instance
instance Monad Haxl where
  return a = Haxl $ return (Done a)

  Haxl m >>= k = Haxl $ do
    r <- m
    case r of
      Done a       -> unHaxl (k a)
      Blocked br c -> return (Blocked br (c >>= k))



Monad instance
instance Monad Haxl where
  return a = Haxl $ return (Done a)

  Haxl m >>= k = Haxl $ do
    r <- m
    case r of
      Done a       -> unHaxl (k a)
      Blocked br c -> return (Blocked br (c >>= k))



Monad instance
instance Monad Haxl where
  return a = Haxl $ return (Done a)

  Haxl m >>= k = Haxl $ do
    r <- m
    case r of
      Done a       -> unHaxl (k a)
      Blocked br c -> return (Blocked br (c >>= k))

If m blocks with continuation c, 
the continuation for m >>= k is c >>= k



This is called a concurrency monad
▪ The essence of computations that can pause and continue
▪ It needs a scheduler
▪ The scheduler will

▪ Run the computation
▪ If it returns Done a, we’re finished, result is a
▪ If it returns Blocked reqs cont:

▪ fetch the required data reqs
▪ continue by executing cont



The scheduler
▪ Assume we have a way to fetch data:

▪ Now, to run a Haxl computation to completion:

fetch :: [BlockedRequest] -> IO ()

runHaxl :: Haxl a -> IO a
runHaxl (Haxl h) = do
  result <- h
  case result of
    Done a -> return a
    Blocked br cont -> do
      fetch br
      runHaxl cont



But how do we get the result of a data fetch?

▪ It is possible to plumb it around, but messy and inefficient
▪ In Haxl we use an IORef:

▪ The job of fetch is to fetch the data and fill the IORefs:

data BlockedRequest = 
  forall a . BlockedRequest (Request a) (IORef (Maybe a))

A request for a result of type a

Put the result here (initially Nothing)

fetch :: [BlockedRequest] -> IO ()



We need a request operation

▪ (this is simplified; in the real Haxl, Request is a type class so that 
you can use it with arbitrary data sources)

dataFetch :: Request a -> Haxl a
dataFetch req = Haxl $ do
  ref <- newIORef Nothing
  return (Blocked [BlockedFetch req ref] (get ref))
 where
  get ref = Haxl $ do 
    Just x <- readIORef ref

 return x

Empty ref to 
put the result

Continuation:
read the result 

from the ref



Example of a Request
Use a GADT:

data Request a where
  FriendsOf :: Id -> Request [Id]

friendsOf :: Id -> Haxl [Id]
friendsOf x = dataFetch (FriendsOf x)



Yes, but the point was to be able to do multiple data-fetches 
concurrently!

So far you’ve only told us how to do one data-fetch at a time.



• Our example will block on the first friendsOf request:

• How do we allow the Monad to collect multiple data-fetches, so we 
can execute them concurrently?

numCommonFriends a b = do
  fa <- friendsOf a
  fb <- friendsOf b
  return (length (intersect fa fb))

blocks here



First, rewrite to use Applicative operators

▪ When we use Applicative, Haxl can collect multiple data fetches and 
execute them concurrently.

▪ How?

numCommonFriends a b =
  length <$> (intersect <$> friendsOf a <*> friendsOf b)



Applicative allows parallelism

(>>=) :: Monad m       => m a       → (a → m b) → m b

dependency

independent

(<*>) :: Applicative f => f (a → b) → f a       → f b



Applicative
▪ You can use <*> only when the two computations have no data 

dependency (they may have effect dependencies though…)
▪ The implementation of <*> is therefore free to exploit this 

independence for parallelism
▪ This is why Applicative is a weaker abstraction than Monad: it 

doesn’t provide for data dependency between effects



Applicative instance

<*> allows both arguments to block waiting for data

<*> can be nested, letting us collect an arbitrary number of data fetches 
to execute concurrently

instance Applicative Haxl where
  pure = return

  Haxl f <*> Haxl x = Haxl $ do
    f' <- f
    x' <- x
    case (f',x') of
      (Done g,        Done y       ) -> return (Done (g y))
      (Done g,        Blocked br c ) -> return (Blocked br (g <$> c))
      (Blocked br c,  Done y       ) -> return (Blocked br (c <*> return y))
      (Blocked br1 c, Blocked br2 d) -> return (Blocked (br1 <> br2) (c <*> d))



Example
(intersect <$> friendsOf x) <*> friendsOf y
= 
(friendsOf x >>= return . intersect) <*> friendsOf y

(<$>) = fmap
fmap f m = m >>= return . f



Example
(friendsOf x >>= return . intersect) <*> friendsOf y
= 
((Blocked [BlockedRequest (FriendsOf x) rx] (get rx)
   >>= return . intersect) <*> friendsOf y

friendsOf x = dataFetch (FriendsOf x)

dataFetch :: Request a -> Haxl a
dataFetch req = Haxl $ do
  ref <- newIORef Nothing
  return (Blocked [BlockedFetch req ref] (get ref))



Example
((Blocked [BlockedRequest (FriendsOf x) rx] (get rx)
   >>= return . intersect) <*> friendsOf y
= 
(Blocked [BlockedRequest (FriendsOf x) rx] 
  (get rx >>= return . intersect))  <*> friendsOf y

  Haxl m >>= k = Haxl $ do
    r <- m
    case r of
      Done a       -> unHaxl (k a)
      Blocked br c -> return (Blocked br (c >>= k))



Example
(Blocked [BlockedRequest (FriendsOf x) rx] 
  (get rx >>= return . intersect))  <*> friendsOf y
=
(Blocked [BlockedRequest (FriendsOf x) rx] 
  (get rx >>= return . intersect)) <*>  
     Blocked [BlockedRequest (FriendsOf y) ry] (get ry)



Example
(Blocked [BlockedRequest (FriendsOf x) rx] 
  (get rx >>= return . intersect)) <*>  
     Blocked [BlockedRequest (FriendsOf y) ry] (get ry)
= 

Blocked [ BlockedRequest (FriendsOf x) rx
        , BlockedRequest (FriendsOf y) ry]
   ((get rx >>= return . intersect) <*> get ry)

  Haxl f <*> Haxl x = Haxl $ do
    f' <- f
    x' <- x
    case (f',x') of
      ...
      (Blocked br1 c, Blocked br2 d) -> 
         return (Blocked (br1 <> br2) (c <*> d))



<*>

<*>

<*>

>>=
>>=

Round 
1

Round 
2



(Some) Concurrency for free
▪ Applicative is a standard class in Haskell

▪ Lots of library functions are already defined using it

▪ These work concurrently when used with Haxl

▪ e.g.
sequence :: Monad m => [m a] -> m [a]
mapM     :: Monad m => (a -> b) -> m [a] -> m [b]
filterM  :: Monad m => (a -> m Bool) -> [a] -> m [a]

friendsLikeCPlusPlus = do
  friends <- getFriends
  cppFriends <- filterM likesCPlusPlus friends
  ...



Haxl is a general solution
▪ ... to the problem of scheduling I/O

▪ it’s useful anywhere that needs to do I/O and doesn’t want to express 
concurrency explicitly.

▪ Let’s write a blog engine.



Concrete example: a blog
▪ Main pane: posts

▪ Left pane:

▪ Top-10 most popular posts

▪ Post topics, with post counts



blog :: Haxl Html
blog = renderPage <$> leftPane <*> mainPane

leftPane :: Haxl Html
leftPane = renderSidePane <$> popularPosts <*> topics

renderPage     :: Html -> Html -> Html
renderSidePane :: Html -> Html -> Html



data PostId      -- identifies a post
data PostContent -- the content of a post

-- metadata about a post
data PostInfo = PostInfo
  { postId    :: PostId
  , postDate  :: Date
  , ...
  }

-- data-fetching operations
getPostIds     :: Haxl [PostId]
getPostInfo    :: PostId -> Haxl PostInfo
getPostContent :: PostId -> Haxl PostContent

getAllPostsInfo :: Haxl [PostInfo]
getAllPostsInfo = do
  ids <- getPostIds
  mapM getPostInfo ids



mainPane :: Haxl Html
mainPane = do
  posts <- getAllPostsInfo
  let ordered = take 5 $ sortBy (flip (comparing postDate)) posts
  content <- mapM (getPostContent . postId) ordered
  return $ renderPosts (zip ordered content)

First we fetch 
all the 

metadata Sort it by date, 
and take the 

latest 5

Fetch the 
content for 

those 5And finally 
render the 

output



▪ No explicit concurrency constructs

▪ Just standard structuring tools: do-notation, <*>, mapM

▪ No concurrency bugs

mainPane :: Haxl Html
mainPane = do
  posts <- getAllPostsInfo
  let ordered = take 5 $ sortBy (flip (comparing postDate)) posts
  content <- mapM (getPostContent . postId) ordered
  return $ renderPosts (zip ordered content)

Things to note



No manual batching

getAllPostsInfo :: Haxl [PostInfo]
getAllPostsInfo = do
  ids <- getPostIds
  mapM getPostInfo ids

This line 
performs many 

data fetches

SELECT postinfo FROM posts
  WHERE postid = id1

SELECT postinfo FROM posts
  WHERE postid = id2

...

SELECT postinfo FROM posts
  WHERE postid IN {id1, id2, ...}

Unbatched Batched



▪ Multiple parts of our application might want to access the same data
▪ e.g. in the blog, we query the list of posts in multiple panes

▪

mainPane :: Haxl Html
mainPane = do
  posts <- getAllPostsInfo
  …

topics :: Haxl Html
topics = do
  posts <- getAllPostsInfo
  …



Caching
▪ For efficiency, fetch the data only once
▪ But factoring out the fetching logic and passing the results around 

would be
▪ anti-modular
▪ unnecessary code churn and clutter

▪ Therefore: Haxl caches all data fetches automatically
▪ Multiple identical requests result in just one remote fetch

▪ Ubiquitous caching is liberating: don’t worry about duplicating work, 
just write the logic you want.



Taking caching a step further
▪ At the end of the computation, the cache contains all the data we 

fetched
▪ If we run the computation again,

▪ it will use the cached data
▪ and return exactly the same result as before, guaranteed

▪ We can exploit this!
▪ Run the code & save the cache, we now have a unit test that 

works even when the real data changes
▪ We can debug errors that happen in production



▪ Haxl provides dumpCacheAsHaskell
▪ (demo)
▪ copy/paste result to make a unit test
▪ at Facebook we have a custom GHCi command to create tests



Taking caching even further...
▪ We can cache not just data-fetches, but the results of arbitrary 

computations.
▪ This is called memoization
▪ Haxl supports memoization via an operation:

▪ Memoization is liberating, just like caching: 
▪ we can stop worrying about duplicating work.
▪ share code, not work.
▪ Increases modularity, no need to plumb results around.
▪ Just write the logic you want.
▪ (needs profiling to decide where to memoize)

cachedComputation :: Key -> Haxl a -> Haxl a



End of Part 1!



Our scenario

e.g. web application (result = HTML), other application-logic platforms.

Your Service
(application 

logic)

Input request + data

Results

Other services: DBs, caching, etc. 



Recap
▪ Fetching data efficiently is the first-order concern

▪ (we typically spend more time waiting for data than computing)
▪ Getting concurrency right by hand is

▪ difficult
▪ annoying
▪ fragile
▪ distracts from the logic you’re trying to implement



numCommonFriends :: Id → Id → Haxl Int
numCommonFriends x y =
  length <$> 
    (intersect
      <$> friendsOf x
      <*> friendsOf y)

[FriendsOf x, FriendsOf y]

Parallel data-fetch



But that’s not enough
▪ Writing in Applicative style by hand can be painful
▪ The programmer has to spot where they can use <*>



numCommonFriends :: Id → Id → Haxl Int
numCommonFriends x y = do
  fx ← friendsOf x
  fy ← friendsOf y
  return (length (intersect fx fy))

[FriendsOf x]
[FriendsOf y]

Sequential data-fetches



Getting it right in more complex cases can be really hard... 



do x1 ← a

   x2 ← b x1

   x3 ← c

   x4 ← d x3

   x5 ← e x1 x4

   return (x2,x4,x5)

do ((x1,x2),x4) <- (,)

     <$> (do x1 <- a

             x2 <- b x1

             return (x1,x2))

     <*> (do x3 <- c; d x3)

    x5 <- e x1 x4

    return (x2,x4,x5)



What shall we do instead?
• Let the user write do-notation
• Have the compiler translate to <*> where possible

• (as a special case, we also get to use do-notation 
for types that are Applicative but not Monad.)





Why is this useful?
▪ Just write a sequence of statements

▪ Compiler analyses the dependencies and extracts the maximum 
parallelism by transforming the sequence using <*> where possible

▪ We don’t have to think about dependencies

▪ We cannot miss any opportunities accidentally



Start with a simple example

do x1 <- A
   x2 <- B
   return (x1,x2)

Standard 
Haskell 

desugaring

A >>= \x1 ->
B >>= \x2 ->
return (x1,x2)

ApplicativeDo

(,) <$> A <*> Bequivalent

f <$> ma = ma >>= \a ->
           return (f a)

mf <*> ma = mf >>= \f -> 
            ma >>= \a -> 
            return (f a)



Dependencies prevent <*>

▪ Now we cannot use <*>, because B depends on x1

▪ This is the essence of the difference between Applicative and Monad:

▪ So we want to use Applicative when possible but Monad when 
necessary.

do x1 <- A
   x2 <- B[x1]
   return (x1,x2)

(<*>) :: Applicative f => f (a -> b) -> f a        -> f b
(>>=) :: Monad f       => f a        -> (a -> f b) -> f b



Mixing it up
▪ What about

do x1 <- A
   x2 <- B
   x3 <- C[x1]
   x4 <- D[x2]
   return (x3,x4)

A B C D



do x1 <- A
   x2 <- B
   x3 <- C[x1]
   x4 <- D[x2]
   return (x3,x4)

ApplicativeDo

((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]



But is that the best translation?

A

B

C

D

(,) result (A | B) ; (C | D)



But is that the best translation?

▪ But we only have dependencies A->C and B->D, so why not 

A

B

C

D

(,) result

A

B

C

D

result

(A | B) ; (C | D)

(A ; C) | (B ; D)



Evaluating cost
▪ Take a simple parallel cost model

▪ “|”  =  “max”

▪ “;”  =  “+”

▪ e.g. take A = 2, B = 1, C = 1, D = 2

(A | B) ; (C | D)          cost: 4

(A ; C) | (B ; D)          cost: 3



Alternative translations

(,) <$> (A >>= \x1 -> C[x1])
    <*> (B >>= \x2 -> D[x2])

(A | B) ; (C | D) ((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

(A ; C) | (B ; D)



But...

▪ This is not semantically equivalent to the original

▪ Effects would take place in the order A,C,B,D

do x1 <- A
   x2 <- B
   x3 <- C[x1]
   x4 <- D[x2]
   return (x3,x4)

NO!
(,) <$> (A >>= \x1 -> C[x1])
    <*> (B >>= \x2 -> D[x2])



But do we really care about ordering?
▪ Haxl doesn’t – or at least, there are no effects to observe

▪ But we do want exceptions to be deterministic:

▪ If B and C throw exceptions, I always want B’s exception.

▪ Reordering to A,C,B,D would break this.

do x1 <- A
   x2 <- B
   x3 <- C[x1]
   x4 <- D[x2]
   return (x3,x4)



Preserving equivalence is good
▪ It means ApplicativeDo works with any Monad/Applicative that satisfies 
the laws.

▪ If we reordered things, it would only work on commutative Monads.



What does optimal mean?

▪ Choices:

do x <- A
   y <- B
   z <- C[x]
   return (y + z)

A B C

A=0, B=2, C=1 A=1, B=2, C=0
(A | B) ; C
A ; (B | C)

3
2

2
3



▪ We don’t know the costs at compile time.

▪ Therefore, be conservative.

▪ Our goal:

▪ (there may be multiple valid solutions)

Choose a translation that is 
optimal when all statements 

have equal cost.



(Aside: use “join”)

▪ Better:

do x1 <- A
   x2 <- B
   x3 <- C[x1]
   x4 <- D[x2]
   return (x3,x4)

ApplicativeDo

((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

join ((\x1 x2 -> (,) C[x1] <*> D[x2]) <$> A <*> B)

join :: Monad m => m (m a) -> m a
join m = m >>= id



Algorithm sketch
▪ Two stages:

do x1 <- A
   x2 <- B[x1]
   x3 <- C
   return (x2,x3)

{ x1 <- A; x2 <- B[x1] }  |  { x3 <- C }

rearrangement

desugaring

(\x2 x3 -> (x2,x3))
  <$> (A >>= \x1 -> B[x1])
  <*> C



Rearrangement
▪ Start with a list of statements

▪ Introduce “parallel blocks” 

▪ Meaning: just flatten the list

▪ A parallel block will turn into an applicative expression

l = { s
1
 ; ... ; s

n
 }

s = ( l
1
 | ... | l

n
 )

do x1 <- A
   x2 <- B[x1]
   x3 <- C
   return (x2,x3)

{ x1 <- A; x2 <- B[x1] }  |  { x3 <- C }

rearrangement



Where do we introduce parallel blocks?
▪ Take the sequence without the final 
return

▪ (desugaring will put it back later)

▪ Split the sequence into segments

▪ Place a segment boundary between 
two statements when there are no 
dependencies that cross the boundary

▪ Make a parallel block from the 
segments; apply recursively

do x1 <- A
   x2 <- B[x1]
   x3 <- C
   return (x2,x3)

do x1 <- A
   x2 <- B[x1]
   x3 <- C
   return (x2,x3)

rearrange { x1 <- A; x2 <- B[x1] }
 | rearrange { x3 <- C }



What if there are no segments?
▪ If it’s a single statement: we’re done

▪ Otherwise we need a “;” somewhere

▪ In this case we have no choice:

▪ (we’ll do a more complex example 
shortly)

▪ Result of rearrangement:

rearrange { x1 <- A; x2 <- B[x1] }
 = { x1 <- A; x2 <- B[x1] }

rearrange { x3 <- C }
 = { x3 <- C }

{ x1 <- A; x2 <- B[x1] } | { x3 <- C }



Next, desugar to get an expression

▪ desugaring a parallel block yields an Applicative expression:

desugar ({ x1 <- A; x2 <- B[x1] } | { x3 <- C }) (x2,x3)

The expression 
from “return” 

(\x2 x3 -> (x2,x3)) 
   <$> desugar { x1 <- A; x2 <- B[x1] } x2
   <*> desugar { x3 <- C } x3



▪ First, deal with this:

▪ Next:

(\x2 x3 -> (x2,x3)) 
   <$> desugar { x1 <- A; x2 <- B[x1] } x2
   <*> desugar { x3 <- C } x3

desugar { x3 <- C } x3
  =
C

desugar { x1 <- A; x2 <- B[x1] } x2
  = 
A >>= \x1 -> desugar { x2 <- B[x1] } x2
  =
A >>= \x1 -> B[x1]



Result

(\x2 x3 -> (x2,x3)) 
   <$> (A >>= \x1 -> B[x1])
   <*> C

do x1 <- A
   x2 <- B[x1]
   x3 <- C
   return (x2,x3)



A more complex example

▪ Rearrange:

▪ There are no segments

▪ We have to insert “;” somewhere

▪ And end up with the optimal result

   x1 <- A
   x2 <- B[x1]
   x3 <- C
   x4 <- D[x3]
   x5 <- E[x1,x4]
   return (x2,x4,x5)



Finding the optimal result
▪ Just evaluate all possibilities:

▪ Starting with 

▪ For each i in 2..n, compute

▪ Evaluate with parallel cost model, with “|” = “max” and “;” = “+”

▪ Every statement costs 1

▪ Pick the cheapest!

{ s
1
 ; ... ; s

n
 }

rearrange { s
1
 ; ... ; s

i-1
 } ; rearrange { s

i
 ; ... ; s

n
 }



   x1 <- A
   x2 <- B[x1]
   x3 <- C
   x4 <- D[x3]
   x5 <- E[x1,x4]
   return (x2,x4,x5)

A ; (B|{C;D;E})  (cost 4)



   x1 <- A
   x2 <- B[x1]
   x3 <- C
   x4 <- D[x3]
   x5 <- E[x1,x4]
   return (x2,x4,x5)

A;B ; C;D;E    (cost 5)



   x1 <- A
   x2 <- B[x1]
   x3 <- C
   x4 <- D[x3]
   x5 <- E[x1,x4]
   return (x2,x4,x5)

({A;B}|C) ; D;E    (cost 4)



   x1 <- A
   x2 <- B[x1]
   x3 <- C
   x4 <- D[x3]
   x5 <- E[x1,x4]
   return (x2,x4,x5)

({A;B}|{C;D}) ; E   (cost 3)

We have a winner!



▪ After desugaring:

▪ Full details in the paper, “Translating Haskell’s do-notation into 
Applicative operations” (Haskell Symposium 2016)

   join (\(x1,x2) x4 -> 
           E[x1,x4] >>= \x5 -> pure (x2,x4,x5))
     <$> (A >>= \x1 -> B[x1] >>= \x2 -> return (x1,x2))
     <*> (C >>= \x3 -> D[x3])



Results
▪ This transform is being used across our codebase at Facebook

▪ (hundreds of thousands of lines of code)

▪ Users typically don’t worry about concurrency

▪ ApplicativeDo gives 20-50% improvement in request latency

▪ (there is already concurrency from mapM, explicit <*>, etc.)



Haskell in the datacentre



Our scenario

Your Service
(application 

logic)

Input request + data

Results

Other services: DBs, caching, etc. 



Our scenario

▪ Sigma is a rule engine used to detect abusive activity
▪ Rule logic is written in Haskell, using Haxl + ApplicativeDo

Sigma

Facebook activity

block / allow

Other services: DBs, caching, etc. 



Stats
▪ Haskell-based Sigma has been running now for over 2 years
▪ Serves over 1M requests per second
▪ Largest Haskell deployment in the world:

▪ thousands of machines across 6 datacentres
▪ Handles abuse detection for multiple different teams & products
▪ Many dozens of people writing Haskell day to day



Moving fast
▪ “git push” pushes to production(!)

▪ Code changes are running live within minutes of pushing
▪ But not too fast:

▪ code review
▪ build failure prevents push
▪ automated unit tests
▪ automated profiling runs to detect regressions



What kind of Haskell do we write?
▪ Custom Prelude

▪ Haxl stuff + common APIs
▪ Partial functions removed (head, undefined…)

▪ Due to difficulty of debugging when they happen in production
▪ Mainly Tasty + HUnit for unit tests

▪ (QuickCheck in a few places)
▪ HLint to enforce style and catch obvious opportunities for cleanup

▪ also to prevent use of deprecated APIs
▪ Automated tools for refactoring across the whole codebase

▪ great for API migrations, cleaning up after deprecations



Tooling
▪ Custom GHCi “haxlsh”

▪ Used for all development & debugging
▪ Links in external C++ libraries to talk to data sources
▪ Means we can interactively develop and test code against 

production data
▪ “Remote GHCi”

▪ Interpreted code runs in profiling mode, so we get stack traces for 
exceptions

▪



Tooling cont.
▪ Our own Thrift to Haskell compiler

▪ Thrift is a language-independent RPC protocol used in FB
▪ Thrift spec defines types and requests for a service
▪ Our compiler uses GADTs and DataKinds to statically enforce 

compiler correctness
▪ For most external data, we talk to the service using Haskell code 

generated by our Thrift compiler
▪ Lightweight Haskell threads scale better than C++ threads



Performance
▪ We did a few things to improve performance:

▪ Tweaks to the GC
▪ Instead of fixed-size per-CPU nurseries, a pool of nursery chunks
▪ Instead of one worker thread per core, N worker threads per core 

but use fewer for GC
▪ Improved load balancing

▪ NUMA-optimised memory allocation
▪ Worker threads pinned to NUMA nodes
▪ Nurseries are pinned to the local NUMA node



Questions?


