
Haskell in the datacentre

Simon Marlow
March 2017

This lecture
▪ Part 1

▪ The Haxl library: making concurrency easy
▪ Part 2

▪ The ApplicativeDo transformation
▪ Running Haskell at scale

Our scenario

e.g. web application (result = HTML), other application-logic platforms.

Your Service
(application

logic)

Input request + data

Results

Other services: DBs, caching, etc.

Fetching data efficiently
is the first-order concern.

We need concurrency
▪ Typically spend more time waiting for data than computing
▪ Multiple independent data-fetch requests must be executed
concurrently and/or batched

▪ Traditional languages and frameworks make the programmer deal with
this
▪ threads, futures/promises, async, callbacks, etc.
▪ Hard to get right, hard to refactor later
▪ Application logic mixed with concurrency

▪ Clutters the code
▪ Clash of concerns

The goal
▪ (Ignoring side effects for now, assume all data-fetching is effect-free)
▪ data-fetching is a function
▪ “just write functional code”
▪ the framework exploits concurrency as far as data dependencies allow
▪ The programmer doesn’t need to think about it

friendsWhoLikeCPlusPlus = do
 friends <- getFriends
 filterM likesCPlusPlus friends
 where
 likesCPlusPlus = ...

getFriends

likesCPlusPlus
likesCPlusPlus

likesCPlusPlus
likesCPlusPlus

likesCPlusPlus

numCommonFriends a b = do
 fa <- friendsOf a
 fb <- friendsOf b
 return (length (intersect fa fb))

friendsOf a friendsOf b

length (intersect ...)

Haxl: a library for implicit concurrency

▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block,
waiting for data.

data Result a
 = Done a
 | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block,
waiting for data.

data Result a
 = Done a
 | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

This is the
result of a

computation

▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block,
waiting for data.

data Result a
 = Done a
 | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Done indicates
that we have

finished

▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block,
waiting for data.

data Result a
 = Done a
 | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Blocked indicates that the
computation requires this

data.

▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block,
waiting for data.

data Result a
 = Done a
 | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

This is the continuation to
compute the result after the

data has been fetched

▪ Haxl is a Monad

▪ The implementation of (>>=) will allow the computation to block,
waiting for data.

data Result a
 = Done a
 | Blocked [BlockedRequest] (Haxl a)

newtype Haxl a = Haxl { unHaxl :: IO (Result a) }

Haxl may need
to do IO

Monad instance
instance Monad Haxl where
 return a = Haxl $ return (Done a)

 Haxl m >>= k = Haxl $ do
 r <- m
 case r of
 Done a -> unHaxl (k a)
 Blocked br c -> return (Blocked br (c >>= k))

Monad instance
instance Monad Haxl where
 return a = Haxl $ return (Done a)

 Haxl m >>= k = Haxl $ do
 r <- m
 case r of
 Done a -> unHaxl (k a)
 Blocked br c -> return (Blocked br (c >>= k))

Monad instance
instance Monad Haxl where
 return a = Haxl $ return (Done a)

 Haxl m >>= k = Haxl $ do
 r <- m
 case r of
 Done a -> unHaxl (k a)
 Blocked br c -> return (Blocked br (c >>= k))

If m blocks with continuation c,
the continuation for m >>= k is c >>= k

This is called a concurrency monad
▪ The essence of computations that can pause and continue
▪ It needs a scheduler
▪ The scheduler will

▪ Run the computation
▪ If it returns Done a, we’re finished, result is a
▪ If it returns Blocked reqs cont:

▪ fetch the required data reqs
▪ continue by executing cont

The scheduler
▪ Assume we have a way to fetch data:

▪ Now, to run a Haxl computation to completion:

fetch :: [BlockedRequest] -> IO ()

runHaxl :: Haxl a -> IO a
runHaxl (Haxl h) = do
 result <- h
 case result of
 Done a -> return a
 Blocked br cont -> do
 fetch br
 runHaxl cont

But how do we get the result of a data fetch?

▪ It is possible to plumb it around, but messy and inefficient
▪ In Haxl we use an IORef:

▪ The job of fetch is to fetch the data and fill the IORefs:

data BlockedRequest =
 forall a . BlockedRequest (Request a) (IORef (Maybe a))

A request for a result of type a

Put the result here (initially Nothing)

fetch :: [BlockedRequest] -> IO ()

We need a request operation

▪ (this is simplified; in the real Haxl, Request is a type class so that
you can use it with arbitrary data sources)

dataFetch :: Request a -> Haxl a
dataFetch req = Haxl $ do
 ref <- newIORef Nothing
 return (Blocked [BlockedFetch req ref] (get ref))
 where
 get ref = Haxl $ do
 Just x <- readIORef ref

 return x

Empty ref to
put the result

Continuation:
read the result

from the ref

Example of a Request
Use a GADT:

data Request a where
 FriendsOf :: Id -> Request [Id]

friendsOf :: Id -> Haxl [Id]
friendsOf x = dataFetch (FriendsOf x)

Yes, but the point was to be able to do multiple data-fetches
concurrently!

So far you’ve only told us how to do one data-fetch at a time.

• Our example will block on the first friendsOf request:

• How do we allow the Monad to collect multiple data-fetches, so we
can execute them concurrently?

numCommonFriends a b = do
 fa <- friendsOf a
 fb <- friendsOf b
 return (length (intersect fa fb))

blocks here

First, rewrite to use Applicative operators

▪ When we use Applicative, Haxl can collect multiple data fetches and
execute them concurrently.

▪ How?

numCommonFriends a b =
 length <$> (intersect <$> friendsOf a <*> friendsOf b)

Applicative allows parallelism

(>>=) :: Monad m => m a → (a → m b) → m b

dependency

independent

(<*>) :: Applicative f => f (a → b) → f a → f b

Applicative
▪ You can use <*> only when the two computations have no data

dependency (they may have effect dependencies though…)
▪ The implementation of <*> is therefore free to exploit this

independence for parallelism
▪ This is why Applicative is a weaker abstraction than Monad: it

doesn’t provide for data dependency between effects

Applicative instance

<*> allows both arguments to block waiting for data

<*> can be nested, letting us collect an arbitrary number of data fetches
to execute concurrently

instance Applicative Haxl where
 pure = return

 Haxl f <*> Haxl x = Haxl $ do
 f' <- f
 x' <- x
 case (f',x') of
 (Done g, Done y) -> return (Done (g y))
 (Done g, Blocked br c) -> return (Blocked br (g <$> c))
 (Blocked br c, Done y) -> return (Blocked br (c <*> return y))
 (Blocked br1 c, Blocked br2 d) -> return (Blocked (br1 <> br2) (c <*> d))

Example
(intersect <$> friendsOf x) <*> friendsOf y
=
(friendsOf x >>= return . intersect) <*> friendsOf y

(<$>) = fmap
fmap f m = m >>= return . f

Example
(friendsOf x >>= return . intersect) <*> friendsOf y
=
((Blocked [BlockedRequest (FriendsOf x) rx] (get rx)
 >>= return . intersect) <*> friendsOf y

friendsOf x = dataFetch (FriendsOf x)

dataFetch :: Request a -> Haxl a
dataFetch req = Haxl $ do
 ref <- newIORef Nothing
 return (Blocked [BlockedFetch req ref] (get ref))

Example
((Blocked [BlockedRequest (FriendsOf x) rx] (get rx)
 >>= return . intersect) <*> friendsOf y
=
(Blocked [BlockedRequest (FriendsOf x) rx]
 (get rx >>= return . intersect)) <*> friendsOf y

 Haxl m >>= k = Haxl $ do
 r <- m
 case r of
 Done a -> unHaxl (k a)
 Blocked br c -> return (Blocked br (c >>= k))

Example
(Blocked [BlockedRequest (FriendsOf x) rx]
 (get rx >>= return . intersect)) <*> friendsOf y
=
(Blocked [BlockedRequest (FriendsOf x) rx]
 (get rx >>= return . intersect)) <*>
 Blocked [BlockedRequest (FriendsOf y) ry] (get ry)

Example
(Blocked [BlockedRequest (FriendsOf x) rx]
 (get rx >>= return . intersect)) <*>
 Blocked [BlockedRequest (FriendsOf y) ry] (get ry)
=

Blocked [BlockedRequest (FriendsOf x) rx
 , BlockedRequest (FriendsOf y) ry]
 ((get rx >>= return . intersect) <*> get ry)

 Haxl f <*> Haxl x = Haxl $ do
 f' <- f
 x' <- x
 case (f',x') of
 ...
 (Blocked br1 c, Blocked br2 d) ->
 return (Blocked (br1 <> br2) (c <*> d))

<*>

<*>

<*>

>>=
>>=

Round
1

Round
2

(Some) Concurrency for free
▪ Applicative is a standard class in Haskell

▪ Lots of library functions are already defined using it

▪ These work concurrently when used with Haxl

▪ e.g.
sequence :: Monad m => [m a] -> m [a]
mapM :: Monad m => (a -> b) -> m [a] -> m [b]
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]

friendsLikeCPlusPlus = do
 friends <- getFriends
 cppFriends <- filterM likesCPlusPlus friends
 ...

Haxl is a general solution
▪ ... to the problem of scheduling I/O

▪ it’s useful anywhere that needs to do I/O and doesn’t want to express
concurrency explicitly.

▪ Let’s write a blog engine.

Concrete example: a blog
▪ Main pane: posts

▪ Left pane:

▪ Top-10 most popular posts

▪ Post topics, with post counts

blog :: Haxl Html
blog = renderPage <$> leftPane <*> mainPane

leftPane :: Haxl Html
leftPane = renderSidePane <$> popularPosts <*> topics

renderPage :: Html -> Html -> Html
renderSidePane :: Html -> Html -> Html

data PostId -- identifies a post
data PostContent -- the content of a post

-- metadata about a post
data PostInfo = PostInfo
 { postId :: PostId
 , postDate :: Date
 , ...
 }

-- data-fetching operations
getPostIds :: Haxl [PostId]
getPostInfo :: PostId -> Haxl PostInfo
getPostContent :: PostId -> Haxl PostContent

getAllPostsInfo :: Haxl [PostInfo]
getAllPostsInfo = do
 ids <- getPostIds
 mapM getPostInfo ids

mainPane :: Haxl Html
mainPane = do
 posts <- getAllPostsInfo
 let ordered = take 5 $ sortBy (flip (comparing postDate)) posts
 content <- mapM (getPostContent . postId) ordered
 return $ renderPosts (zip ordered content)

First we fetch
all the

metadata Sort it by date,
and take the

latest 5

Fetch the
content for

those 5And finally
render the

output

▪ No explicit concurrency constructs

▪ Just standard structuring tools: do-notation, <*>, mapM

▪ No concurrency bugs

mainPane :: Haxl Html
mainPane = do
 posts <- getAllPostsInfo
 let ordered = take 5 $ sortBy (flip (comparing postDate)) posts
 content <- mapM (getPostContent . postId) ordered
 return $ renderPosts (zip ordered content)

Things to note

No manual batching

getAllPostsInfo :: Haxl [PostInfo]
getAllPostsInfo = do
 ids <- getPostIds
 mapM getPostInfo ids

This line
performs many

data fetches

SELECT postinfo FROM posts
 WHERE postid = id1

SELECT postinfo FROM posts
 WHERE postid = id2

...

SELECT postinfo FROM posts
 WHERE postid IN {id1, id2, ...}

Unbatched Batched

▪ Multiple parts of our application might want to access the same data
▪ e.g. in the blog, we query the list of posts in multiple panes

▪

mainPane :: Haxl Html
mainPane = do
 posts <- getAllPostsInfo
 …

topics :: Haxl Html
topics = do
 posts <- getAllPostsInfo
 …

Caching
▪ For efficiency, fetch the data only once
▪ But factoring out the fetching logic and passing the results around

would be
▪ anti-modular
▪ unnecessary code churn and clutter

▪ Therefore: Haxl caches all data fetches automatically
▪ Multiple identical requests result in just one remote fetch

▪ Ubiquitous caching is liberating: don’t worry about duplicating work,
just write the logic you want.

Taking caching a step further
▪ At the end of the computation, the cache contains all the data we

fetched
▪ If we run the computation again,

▪ it will use the cached data
▪ and return exactly the same result as before, guaranteed

▪ We can exploit this!
▪ Run the code & save the cache, we now have a unit test that

works even when the real data changes
▪ We can debug errors that happen in production

▪ Haxl provides dumpCacheAsHaskell
▪ (demo)
▪ copy/paste result to make a unit test
▪ at Facebook we have a custom GHCi command to create tests

Taking caching even further...
▪ We can cache not just data-fetches, but the results of arbitrary

computations.
▪ This is called memoization
▪ Haxl supports memoization via an operation:

▪ Memoization is liberating, just like caching:
▪ we can stop worrying about duplicating work.
▪ share code, not work.
▪ Increases modularity, no need to plumb results around.
▪ Just write the logic you want.
▪ (needs profiling to decide where to memoize)

cachedComputation :: Key -> Haxl a -> Haxl a

End of Part 1!

Our scenario

e.g. web application (result = HTML), other application-logic platforms.

Your Service
(application

logic)

Input request + data

Results

Other services: DBs, caching, etc.

Recap
▪ Fetching data efficiently is the first-order concern

▪ (we typically spend more time waiting for data than computing)
▪ Getting concurrency right by hand is

▪ difficult
▪ annoying
▪ fragile
▪ distracts from the logic you’re trying to implement

numCommonFriends :: Id → Id → Haxl Int
numCommonFriends x y =
 length <$>
 (intersect
 <$> friendsOf x
 <*> friendsOf y)

[FriendsOf x, FriendsOf y]

Parallel data-fetch

But that’s not enough
▪ Writing in Applicative style by hand can be painful
▪ The programmer has to spot where they can use <*>

numCommonFriends :: Id → Id → Haxl Int
numCommonFriends x y = do
 fx ← friendsOf x
 fy ← friendsOf y
 return (length (intersect fx fy))

[FriendsOf x]
[FriendsOf y]

Sequential data-fetches

Getting it right in more complex cases can be really hard...

do x1 ← a

 x2 ← b x1

 x3 ← c

 x4 ← d x3

 x5 ← e x1 x4

 return (x2,x4,x5)

do ((x1,x2),x4) <- (,)

 <$> (do x1 <- a

 x2 <- b x1

 return (x1,x2))

 <*> (do x3 <- c; d x3)

 x5 <- e x1 x4

 return (x2,x4,x5)

What shall we do instead?
• Let the user write do-notation
• Have the compiler translate to <*> where possible

• (as a special case, we also get to use do-notation
for types that are Applicative but not Monad.)

Why is this useful?
▪ Just write a sequence of statements

▪ Compiler analyses the dependencies and extracts the maximum
parallelism by transforming the sequence using <*> where possible

▪ We don’t have to think about dependencies

▪ We cannot miss any opportunities accidentally

Start with a simple example

do x1 <- A
 x2 <- B
 return (x1,x2)

Standard
Haskell

desugaring

A >>= \x1 ->
B >>= \x2 ->
return (x1,x2)

ApplicativeDo

(,) <$> A <*> Bequivalent

f <$> ma = ma >>= \a ->
 return (f a)

mf <*> ma = mf >>= \f ->
 ma >>= \a ->
 return (f a)

Dependencies prevent <*>

▪ Now we cannot use <*>, because B depends on x1

▪ This is the essence of the difference between Applicative and Monad:

▪ So we want to use Applicative when possible but Monad when
necessary.

do x1 <- A
 x2 <- B[x1]
 return (x1,x2)

(<*>) :: Applicative f => f (a -> b) -> f a -> f b
(>>=) :: Monad f => f a -> (a -> f b) -> f b

Mixing it up
▪ What about

do x1 <- A
 x2 <- B
 x3 <- C[x1]
 x4 <- D[x2]
 return (x3,x4)

A B C D

do x1 <- A
 x2 <- B
 x3 <- C[x1]
 x4 <- D[x2]
 return (x3,x4)

ApplicativeDo

((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

But is that the best translation?

A

B

C

D

(,) result (A | B) ; (C | D)

But is that the best translation?

▪ But we only have dependencies A->C and B->D, so why not

A

B

C

D

(,) result

A

B

C

D

result

(A | B) ; (C | D)

(A ; C) | (B ; D)

Evaluating cost
▪ Take a simple parallel cost model

▪ “|” = “max”

▪ “;” = “+”

▪ e.g. take A = 2, B = 1, C = 1, D = 2

(A | B) ; (C | D) cost: 4

(A ; C) | (B ; D) cost: 3

Alternative translations

(,) <$> (A >>= \x1 -> C[x1])
 <*> (B >>= \x2 -> D[x2])

(A | B) ; (C | D) ((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

(A ; C) | (B ; D)

But...

▪ This is not semantically equivalent to the original

▪ Effects would take place in the order A,C,B,D

do x1 <- A
 x2 <- B
 x3 <- C[x1]
 x4 <- D[x2]
 return (x3,x4)

NO!
(,) <$> (A >>= \x1 -> C[x1])
 <*> (B >>= \x2 -> D[x2])

But do we really care about ordering?
▪ Haxl doesn’t – or at least, there are no effects to observe

▪ But we do want exceptions to be deterministic:

▪ If B and C throw exceptions, I always want B’s exception.

▪ Reordering to A,C,B,D would break this.

do x1 <- A
 x2 <- B
 x3 <- C[x1]
 x4 <- D[x2]
 return (x3,x4)

Preserving equivalence is good
▪ It means ApplicativeDo works with any Monad/Applicative that satisfies
the laws.

▪ If we reordered things, it would only work on commutative Monads.

What does optimal mean?

▪ Choices:

do x <- A
 y <- B
 z <- C[x]
 return (y + z)

A B C

A=0, B=2, C=1 A=1, B=2, C=0
(A | B) ; C
A ; (B | C)

3
2

2
3

▪ We don’t know the costs at compile time.

▪ Therefore, be conservative.

▪ Our goal:

▪ (there may be multiple valid solutions)

Choose a translation that is
optimal when all statements

have equal cost.

(Aside: use “join”)

▪ Better:

do x1 <- A
 x2 <- B
 x3 <- C[x1]
 x4 <- D[x2]
 return (x3,x4)

ApplicativeDo

((,) <$> A <*> B) >>= \(x1,x2) ->
(,) <$> C[x1] <*> D[x2]

join ((\x1 x2 -> (,) C[x1] <*> D[x2]) <$> A <*> B)

join :: Monad m => m (m a) -> m a
join m = m >>= id

Algorithm sketch
▪ Two stages:

do x1 <- A
 x2 <- B[x1]
 x3 <- C
 return (x2,x3)

{ x1 <- A; x2 <- B[x1] } | { x3 <- C }

rearrangement

desugaring

(\x2 x3 -> (x2,x3))
 <$> (A >>= \x1 -> B[x1])
 <*> C

Rearrangement
▪ Start with a list of statements

▪ Introduce “parallel blocks”

▪ Meaning: just flatten the list

▪ A parallel block will turn into an applicative expression

l = { s
1
 ; ... ; s

n
 }

s = (l
1
 | ... | l

n
)

do x1 <- A
 x2 <- B[x1]
 x3 <- C
 return (x2,x3)

{ x1 <- A; x2 <- B[x1] } | { x3 <- C }

rearrangement

Where do we introduce parallel blocks?
▪ Take the sequence without the final
return

▪ (desugaring will put it back later)

▪ Split the sequence into segments

▪ Place a segment boundary between
two statements when there are no
dependencies that cross the boundary

▪ Make a parallel block from the
segments; apply recursively

do x1 <- A
 x2 <- B[x1]
 x3 <- C
 return (x2,x3)

do x1 <- A
 x2 <- B[x1]
 x3 <- C
 return (x2,x3)

rearrange { x1 <- A; x2 <- B[x1] }
 | rearrange { x3 <- C }

What if there are no segments?
▪ If it’s a single statement: we’re done

▪ Otherwise we need a “;” somewhere

▪ In this case we have no choice:

▪ (we’ll do a more complex example
shortly)

▪ Result of rearrangement:

rearrange { x1 <- A; x2 <- B[x1] }
 = { x1 <- A; x2 <- B[x1] }

rearrange { x3 <- C }
 = { x3 <- C }

{ x1 <- A; x2 <- B[x1] } | { x3 <- C }

Next, desugar to get an expression

▪ desugaring a parallel block yields an Applicative expression:

desugar ({ x1 <- A; x2 <- B[x1] } | { x3 <- C }) (x2,x3)

The expression
from “return”

(\x2 x3 -> (x2,x3))
 <$> desugar { x1 <- A; x2 <- B[x1] } x2
 <*> desugar { x3 <- C } x3

▪ First, deal with this:

▪ Next:

(\x2 x3 -> (x2,x3))
 <$> desugar { x1 <- A; x2 <- B[x1] } x2
 <*> desugar { x3 <- C } x3

desugar { x3 <- C } x3
 =
C

desugar { x1 <- A; x2 <- B[x1] } x2
 =
A >>= \x1 -> desugar { x2 <- B[x1] } x2
 =
A >>= \x1 -> B[x1]

Result

(\x2 x3 -> (x2,x3))
 <$> (A >>= \x1 -> B[x1])
 <*> C

do x1 <- A
 x2 <- B[x1]
 x3 <- C
 return (x2,x3)

A more complex example

▪ Rearrange:

▪ There are no segments

▪ We have to insert “;” somewhere

▪ And end up with the optimal result

 x1 <- A
 x2 <- B[x1]
 x3 <- C
 x4 <- D[x3]
 x5 <- E[x1,x4]
 return (x2,x4,x5)

Finding the optimal result
▪ Just evaluate all possibilities:

▪ Starting with

▪ For each i in 2..n, compute

▪ Evaluate with parallel cost model, with “|” = “max” and “;” = “+”

▪ Every statement costs 1

▪ Pick the cheapest!

{ s
1
 ; ... ; s

n
 }

rearrange { s
1
 ; ... ; s

i-1
 } ; rearrange { s

i
 ; ... ; s

n
 }

 x1 <- A
 x2 <- B[x1]
 x3 <- C
 x4 <- D[x3]
 x5 <- E[x1,x4]
 return (x2,x4,x5)

A ; (B|{C;D;E}) (cost 4)

 x1 <- A
 x2 <- B[x1]
 x3 <- C
 x4 <- D[x3]
 x5 <- E[x1,x4]
 return (x2,x4,x5)

A;B ; C;D;E (cost 5)

 x1 <- A
 x2 <- B[x1]
 x3 <- C
 x4 <- D[x3]
 x5 <- E[x1,x4]
 return (x2,x4,x5)

({A;B}|C) ; D;E (cost 4)

 x1 <- A
 x2 <- B[x1]
 x3 <- C
 x4 <- D[x3]
 x5 <- E[x1,x4]
 return (x2,x4,x5)

({A;B}|{C;D}) ; E (cost 3)

We have a winner!

▪ After desugaring:

▪ Full details in the paper, “Translating Haskell’s do-notation into
Applicative operations” (Haskell Symposium 2016)

 join (\(x1,x2) x4 ->
 E[x1,x4] >>= \x5 -> pure (x2,x4,x5))
 <$> (A >>= \x1 -> B[x1] >>= \x2 -> return (x1,x2))
 <*> (C >>= \x3 -> D[x3])

Results
▪ This transform is being used across our codebase at Facebook

▪ (hundreds of thousands of lines of code)

▪ Users typically don’t worry about concurrency

▪ ApplicativeDo gives 20-50% improvement in request latency

▪ (there is already concurrency from mapM, explicit <*>, etc.)

Haskell in the datacentre

Our scenario

Your Service
(application

logic)

Input request + data

Results

Other services: DBs, caching, etc.

Our scenario

▪ Sigma is a rule engine used to detect abusive activity
▪ Rule logic is written in Haskell, using Haxl + ApplicativeDo

Sigma

Facebook activity

block / allow

Other services: DBs, caching, etc.

Stats
▪ Haskell-based Sigma has been running now for over 2 years
▪ Serves over 1M requests per second
▪ Largest Haskell deployment in the world:

▪ thousands of machines across 6 datacentres
▪ Handles abuse detection for multiple different teams & products
▪ Many dozens of people writing Haskell day to day

Moving fast
▪ “git push” pushes to production(!)

▪ Code changes are running live within minutes of pushing
▪ But not too fast:

▪ code review
▪ build failure prevents push
▪ automated unit tests
▪ automated profiling runs to detect regressions

What kind of Haskell do we write?
▪ Custom Prelude

▪ Haxl stuff + common APIs
▪ Partial functions removed (head, undefined…)

▪ Due to difficulty of debugging when they happen in production
▪ Mainly Tasty + HUnit for unit tests

▪ (QuickCheck in a few places)
▪ HLint to enforce style and catch obvious opportunities for cleanup

▪ also to prevent use of deprecated APIs
▪ Automated tools for refactoring across the whole codebase

▪ great for API migrations, cleaning up after deprecations

Tooling
▪ Custom GHCi “haxlsh”

▪ Used for all development & debugging
▪ Links in external C++ libraries to talk to data sources
▪ Means we can interactively develop and test code against

production data
▪ “Remote GHCi”

▪ Interpreted code runs in profiling mode, so we get stack traces for
exceptions

▪

Tooling cont.
▪ Our own Thrift to Haskell compiler

▪ Thrift is a language-independent RPC protocol used in FB
▪ Thrift spec defines types and requests for a service
▪ Our compiler uses GADTs and DataKinds to statically enforce

compiler correctness
▪ For most external data, we talk to the service using Haskell code

generated by our Thrift compiler
▪ Lightweight Haskell threads scale better than C++ threads

Performance
▪ We did a few things to improve performance:

▪ Tweaks to the GC
▪ Instead of fixed-size per-CPU nurseries, a pool of nursery chunks
▪ Instead of one worker thread per core, N worker threads per core

but use fewer for GC
▪ Improved load balancing

▪ NUMA-optimised memory allocation
▪ Worker threads pinned to NUMA nodes
▪ Nurseries are pinned to the local NUMA node

Questions?

